Formulas 1 - Section Properties(Area , Section Modulus , Moment of Inertia , Radius of Gyration)

Top page Handbook of Mathematics Collection−Mathematics Formulas Structural Calculation Program Take a break
Handbook of Physics Foumulas−Area・Volume Foumulas−Structural Beam .
Formulas 2 . Formulas 2-Section Properties Same Section Properties

Cross Section

A:Area (Units2
e:Extreme point(Units)

I:Moment of Inertia(Units4
Z:Section Modulus(Units3) → I/e
i:Radius of Gyration(Units) → √(I/A)

Square

kousikidanmen01squareEng.jpg (8894 バイト)

A = a2

e = a/2

I = a4 /12

Z = a3 /6

i = a / √12 = 0.28867a

danmen01sikaku.jpg (18383 バイト)

Square

kousikidanmen03squareEng.jpg (11049 バイト)

A = a2

e = a / √2

I = a4 /12

Z = a3 / ( 6√2 )

i = a / √12 = 0.28867a

danmen03sikaku.jpg (19292 バイト)

Rectangle

kousikidanmen04sikaku.jpg (4041 バイト)

A = bh

e = h / 2

I = bh3 /12

Z = bh2 /6

i = h / √12 = 0.28867h

danmen04sikaku.jpg (19249 バイト)

Rectangle
at Angles

kousikidanmen06sikaku.jpg (4885 バイト)

A = bh

e = bh / √( b2 + h2 )

I = b3 h3 / ( 6 ( b2 + h2 ) )

Z = b2 h2 / ( 6 √( b2 + h2 ) )  

i = b h / √( 6 ( b2 + h2 ) )   

danmen06sikaku.jpg (24097 バイト)

Rectangle
at Specified Angles

kousikidanmen07sikaku.jpg (8844 バイト)

A = bh

e = ( h・cosθ + b・sinθ) / 2

I = b h ( h2・cos2θ + b2・sin2θ) / 12

Z = b h ( h2・cos2θ + b2・sin2θ) / ( 6 ( h・cosθ + b・sinθ ) )

i = √( ( h2・cos2θ + b2・sin2θ) / 12 )   

danmen07sikaku.jpg (33111 バイト)

Square Tube

kousikidanmen08squaretubeEng.jpg (10671 バイト)

A = a2 - a12

e = a / 2

I = ( a4 - a14 ) / 12

Z =( a4 - a14 ) / ( 6a )

i = √( ( a2 + a12 ) /12 )

danmen08kakupipe.jpg (20125 バイト)

Rectangle Tube

kousikidanmen11kakupipe.jpg (9601 バイト)

A = bh - b1h1

e = h / 2

I = ( bh3 - b1h13 ) / 12

Z = ( bh3 - b1h13 ) / ( 6h )

i = √(( bh3 - b1h13 )/ ( 12(bh - b1h1 )))

danmen11kakupipe.jpg (24307 バイト)

Round

kousikidanmen25maru.jpg (9362 バイト)

A = π d2 / 4 =πR2

e = d / 2

I = πd4 / 64  =  πR4 / 4

Z = πd3 / 32 = πR3 / 4

i = d / 4 = R / 2

danmen25maru.jpg (21660 バイト)

Round Tube / Pipe

kousikidanmen29marupipe.jpg (11933 バイト)

A = π ( D2 - d2 ) / 4

e = D / 2

I = π( D4 - d4 ) / 64

Z = π( D4 - d4 ) / 32D

i = √ ( D2 + d2 ) / 4

danmen29marupipe.jpg (23122 バイト)

H ・ C

kousikidanmen49H.jpg (12067 バイト)

Section of the same group
Part-1

A = BH - bh

e = H / 2

I = ( BH3 - bh3 ) /12

Z = ( BH3 - bh3 ) / ( 6H )

i = √( ( BH3 - bh3 )/ ( 12( BH - bh )))

danmen49H.jpg (25076 バイト)

H ・ T

kousikidanmen50H.jpg (10592 バイト)

Section of the same group
Part-2

A = BH + bh

e = H / 2

I = ( BH3 + bh3 ) /12

Z = ( BH3 + bh3 ) / ( 6H )

i = √( ( BH3 + bh3 )/ ( 12( BH + bh )))

danmen50H.jpg (25551 バイト)

L ・ U

kousikidanmen51T.jpg (9631 バイト)

Section of the same group
Part-3

A = BH - b ( e2 + h )

e1 = (aH2 + bt2) / ( 2(aH + bt))

e2 = H - e1

I = ( Be13 - bh3 + ae23 ) / 3

Z = I / e1  : Z = I / e2

i = √( I / A )

danmen51T.jpg (24001 バイト)

H

kousikidanmen52H.jpg (15397 バイト)

A = b1h1 + b2h2 + b3h3

e1 = h2 - e2

e2 = (b2h22 + b3h32 + b1h1( 2h2 - h1)) / ( 2 (b1h1 + b2h2 + b3h3 ))

I = ( b4e13 - b1h53 + b5e23 - b3h43) / 3

Z = I / e1   : Z = I / e2

i = √( I / A )

danmen52H.jpg (34943 バイト)

Top and Bottom
is not same

kousikidanmen12.jpg (14804 バイト)

A = bt + b1t1

e = (0.5bt2 +  b1t1 (h-0.5t1)) / A

e1 = h-e

I = bt3/12 + bty2 + b1t13/12 + b1t1y12

Z = I / e   : Z = I / e1

i = √( I / A )

danmen12.jpg (25863 バイト)

Top and Bottom
is same

kousikidanmen13.jpg (9057 バイト)

A = b ( h - h1 )

e = h / 2

I = b ( h3 - h13 ) / 12

Z = b ( h3 - h13 ) / ( 6h )

i = √(( h3 - h13 )/ ( 12(h - h1 )))

danmen13.jpg (20048 バイト)

Top page Handbook of Mathematics Collection−Mathematics Formulas Structural Calculation Program Take a break
Handbook of Physics Foumulas−Area・Volume Foumulas−Structural Beam .
Formulas 2 . Formulas 2-Section Properties Same Section Properties

kanpro