Formulas 1 - Section Properties(Area , Section Modulus , Moment of Inertia , Radius of Gyration)
Cross Section |
A:Area (Units2) |
I:Moment of Inertia(Units4) |
Square |
A = a2 e = a/2 |
I = a4 /12 Z = a3 /6 i = a / √12 = 0.28867a |
Square |
A = a2 e = a / √2 |
I = a4 /12 Z = a3 / ( 6√2 ) i = a / √12 = 0.28867a |
Rectangle |
A = bh e = h / 2 |
I = bh3 /12 Z = bh2 /6 i = h / √12 = 0.28867h |
Rectangle |
A = bh e = bh / √( b2 + h2 ) |
I = b3 h3 / ( 6 ( b2 + h2 ) ) Z = b2 h2 / ( 6 √( b2 + h2 ) ) i = b h / √( 6 ( b2 + h2 ) ) |
Rectangle |
A = bh e = ( h・cosθ + b・sinθ) / 2 |
I = b h ( h2・cos2θ
+ b2・sin2θ) / 12 Z = b h ( h2・cos2θ + b2・sin2θ) / ( 6 ( h・cosθ + b・sinθ ) ) i = √( ( h2・cos2θ + b2・sin2θ) / 12 ) |
Square Tube |
A = a2 - a12
e = a / 2 |
I = ( a4 - a14
) / 12 Z =( a4 - a14 ) / ( 6a ) i = √( ( a2 + a12 ) /12 ) |
Rectangle Tube |
A = bh - b1h1 e = h / 2 |
I = ( bh3 - b1h13 ) / 12 Z = ( bh3 - b1h13 ) / ( 6h ) i = √(( bh3 - b1h13 )/ ( 12(bh - b1h1 ))) |
Round |
A = π d2 / 4 =πR2 e = d / 2 |
I = πd4 / 64 = πR4
/ 4 Z = πd3 / 32 = πR3 / 4 i = d / 4 = R / 2 |
Round Tube / Pipe |
A = π ( D2 - d2 ) / 4 e = D / 2 |
I = π( D4 - d4 ) / 64 Z = π( D4 - d4 ) / 32D i = √ ( D2 + d2 ) / 4 |
A = BH - bh e = H / 2 |
I = ( BH3 - bh3 ) /12 Z = ( BH3 - bh3 ) / ( 6H ) i = √( ( BH3 - bh3 )/ ( 12( BH - bh ))) |
|
A = BH + bh e = H / 2 |
I = ( BH3 + bh3 ) /12 Z = ( BH3 + bh3 ) / ( 6H ) i = √( ( BH3 + bh3 )/ ( 12( BH + bh ))) |
|
A = BH - b ( e2
+ h ) e1 = (aH2 + bt2) / ( 2(aH + bt)) e2 = H - e1 |
I = ( Be13
- bh3 + ae23 ) / 3 Z = I / e1 : Z = I / e2 i = √( I / A ) |
|
H |
A = b1h1 + b2h2
+ b3h3 e1 = h2 - e2 e2 = (b2h22 + b3h32 + b1h1( 2h2 - h1)) / ( 2 (b1h1 + b2h2 + b3h3 )) |
I = ( b4e13 - b1h53 + b5e23 - b3h43) / 3 Z = I / e1 : Z = I / e2 i = √( I / A ) |
Top and Bottom |
A = bt + b1t1 e = (0.5bt2 + b1t1 (h-0.5t1)) / A e1 = h-e |
I = bt3/12 + bty2 + b1t13/12 + b1t1y12
Z = I / e : Z = I / e1 i = √( I / A ) |
Top and Bottom |
A = b ( h - h1 ) e = h / 2 |
I = b ( h3 - h13
) / 12 Z = b ( h3 - h13 ) / ( 6h ) i = √(( h3 - h13 )/ ( 12(h - h1 ))) |
|
kanpro