Formulas 2 - Section Properties(Area , Section Modulus , Moment of Inertia , Radius of Gyration)
Cross Section |
A:Area (Units2) |
I:Moment of Inertia(Units4) |
Regular Hexagon |
A = 3/2 ・ h2 tan30° A = 3√3 ・ R2 / 2 e = h/2 |
I = 5√3 ・ R4
/16 Z = 5 R3 /8 i = √(5/24) ・R = 0.457R |
Regular Hexagon |
A = 3/2 ・ h2 tan30° A = 3√3 ・ R2 / 2 e = 0.577h = R |
I = 5√3 ・ R4
/16 Z = 5√3 ・ R3 /16 i = √(5/24) ・ R = 0.457R |
Trapezoid |
A = h ・ ( a + b ) / 2 e = h・( a + 2b ) / ( 3 ( a + b ) ) |
I = h3 ( a2 + 4 ab + b2
)/ ( 36 ( a + b ) ) Z = h2 ( a2 + 4 ab + b2 )/ ( 12 ( a + 2b ) ) i = √(h2 (a2 + 4ab + b2)/ (18 (a + b)2 ) ) |
Triangle |
A = bh / 2 e = 2h / 3 |
I = b h3 / 36 Z = b h2 / 24 i = √( h / 18 ) = 0.236 h |
Half Round |
A = π D2 / 8 e = D (3π- 4) / ( 6π) |
I = D4 ・( 9π2 - 64) / (
1152π) Z = D3 ・( 9π2 - 64) / ( 192 (3π-4)) i = √( D2 ( 9π2 - 64) / (144π) ) |
Half Round−Stand |
A = π R2 / 2 e = R |
I = π R4 / 8 Z = π R3 / 8 i = R / 2 |
Oval |
A = π b h / 4 e = h / 2 |
I = π b h3 / 64 Z = π b h2 / 32 i = h / 4 |
Half Round Tube / Pipe |
A = π ( D2 - d2 ) / 8 e = 2 ( D3 - d3 )/(3π( D2 - d2 )) |
I = (D4 - d4) / 145.7 - D2 d2 (D-d) / ( 56.5 (D+d) ) Z = I / e i = √ ( I/A ) |
Oval Tube / Pipe |
A = π ( BH - bh ) / 4 e = H / 2 |
I = π( BH3 - bh3 ) / 64 Z = π( BH3 - bh3 ) / ( 32H ) i = √( (BH3 - bh3 ) / (16( BH - bh) ) ) |
Square and Round Hole |
A = a2 - πd2 / 4 e = a / 2 |
I = ( a4 - 3πd4 / 16) / 12
Z = ( a4 - 3πd4 / 16) / ( 6a ) i = √ ( I/A ) |
|
kanpro